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Direct Analysis of Small-Angle Equatorial X-ray Scattering from Fibrous Systems. 
I. Expressions for the Intensity and Patterson Function 
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Small-angle equatorial X-ray scattering from fibrous systems is often complicated by the effects of 
morphological organization and/or heterogeneities, as well as by macromolecular structure and organi- 
zation influencing this same region of scattering space. The problem is not easy to solve. As a new ap- 
proach, a technique has been developed that entails a direct quantitative analysis of the Patterson 
function. It is shown that when the intensity data are purposely truncated at appropriate points, the 
Patterson function can be expressed as a closed-form mathematical function of the truncation points 
and parameters describing the scattering system. This allows a direct analysis of the Patterson function 
and an accurate extraction of the parameters describing the scattering system without prior knowledge 
of these parameters. 

1. Introduction 

Most of the methods developed for normal high-angle 
X-ray analysis could, in principle, be applied to small- 
angle X-ray scattering. Unfortunately, structural in- 
homogeneities and lattice distortions yield a diffrac- 
tion pattern that is extremely difficult to analyze. The 
effects of both factors are seen in the high-angle region, 
but because of the rather large size of the structural 
inhomogeneities they give rise to, or dominate, the 
small-angle region of the diffraction pattern on the 
equator. This small-angle scattering has been observed 
in many natural fibrous systems: keratins (Corey & 
Wyckoff, 1936, Krimm, 1963), silk fibroin and lobster 
chitin (Corey & Wyckoff, 1936), cellulose (Corey & 
Wyckoff, 1936, Heikens, Hermans & Weidinger, 1952, 
Heyn, 1948), bone (Engstrom & Finean, 1953), bac- 
terial flagella (Astbury & Weibull, 1949), F-actin (Ast- 
bury & Sparks, 1947, Astbury, 1949), and collagen 
(North, Cowan & Randall, 1954). 

Many models have been proposed to explain some 
of the small-angle scattering, e.g. a limited hexagonal 
lattice (Burge, 1963), a cylindrical lattice (Sasisekharan 
& Ramachandran, 1957), layered arc lattices (Krimm, 
1967), and multiple aggregates (Burge, 1961); but there 
have been relatively few attempts to analyze directly 
small-angle diffraction data. Bear & Bolduan (1950) 
devised a scheme whereby the size of the micelles or 
crystallites can be estimated directly from the diffrac- 
tion pattern; however, due to other structural effects 
their scheme has not been too useful. Perhaps one of 
the best attempts to date was that of Hosemann (1967) 
in the direct semiquantitative analysis of linear poly- 
ethylene, where both the small- and high-angle diffrac- 
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tions in the framework of polydispersity and para- 
crystallinity were considered. 

The problem was approached more directly by the 
use of a radial-distribution function analysis (Heyn, 
1955). This technique, however, suffers from the fact 
that the fibrillar scattering factor must be known; since 
this is not true in most cases, it must be assumed. The 
use of a radial-distribution function analysis also im- 
poses the conditions of an isotropic, homogeneous 
scattering system that is infinite in extent (James, 
1948), conditions usually not satisfied in a fibrous sys- 
tem. 

In an attempt to explain the small-angle equatorial 
X-ray scattering of several fibrous biological systems 
quantitatively, and to avoid assumptions about the 
scattering system, we have developed a technique for 
the direct analysis of these data involving a direct 
quantitative analysis of the Patterson function. 

2. Forced truncation and expressions for 
equatorial intensity 

The analysis of any X-ray diffraction pattern begins 
with an expression for the intensity, which is a func- 
tion of the various parameters describing the scatter- 
ing system. Since this work depends on such an ex- 
pression, a brief review at this point is not only help- 
ful but necessary to define appropriate points to trun- 
cate the equatorial intensity. Also, the expressions are 
rewritten to yield a more meaningful interpretation 
and are modified to account for non-ideal factors, i.e., 
distortion effects, structural inhomogeneities, and fi- 
nite crystallite size. 

An expression for the intensity of scattering from a 
non-ideal fibrous system that is valid for the whole of 
scattering space would be very complex. However, if 
only equatorial intensity is used in an analysis, then 
the synthesized fibril is infinite in extent along its 
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fiber axis (z axis), and the synthesized electron density 
of the fibril is the projection of the fibril onto the x - y  
plane. Further, if the fibrils are roughly circular in 
cross section and, for example, twist or wind along 
their length, then the projected electron density is close 
to being cylindrically symmetric. Also, no matter what 
disposition the fibrils have with respect to their c-axis 
synchronization, the interfibrillar interference due to 
lateral organization is undisturbed on the equator 
(James, 1948). 

Although the mathematical form of the functions 
for the Fourier transform of the fibril and interfibrillar 
interference are simplified by the restriction of an 
equatorial intensity analysis, the actual functions are 
still unknown and are not segregated. Also, distortion 
effects and structural inhomogeneities in the intensity 
remain complex. 

If the equatorial intensity is restricted by using only 
intensity out to, and including, the first-order reflec- 
tion on the equator, then the following implications 
and simplifications result: 

(a) The paracrystalline distortion parameter (A) can 
be neglected as a first approximation, if A/S1 (St is the 
average first nearest-neighbor distance between fibrils 
in a plane perpendicular to the fiber axis) is less than 
about 5 %, i.e. the first few reflections are undistorted 
or crystalline (Hosemann & Bagchi, 1962). This fact 
is not used in the derivations and, hence, does not 
restrict our results; however, since many fibrous sys- 
tems do satisfy this condition, it is discussed in the 
next section. 

(b) The effect of truncating the intensity just outside 
the first-order reflection at k0 allows information of 
only a smeared fibrillar structure to be obtained. To 
express this more quantitatively, we define k =  
4z~ sin 0/2, where 2 is X-ray wavelength and 20 is the 
scattering angle, and let: 

k0 ~ 4re sin 00/2 - 2rc/S1, (1) 
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Fig. 1. Small-angle intensities for a solid cylinder (--Isc), a 
thin shell cylinder (---ITs), and the affine transformation 
(o ©I') which shows their equivalence. 

where $1 is the first nearest-neighbor separation. From 
(1) we see that if $1 - diameter of the fibrils, the smallest 
structure that can be resolved is the order of 0.6 times 
the diameter of the fibrils (James, 1948). 

(c) Because structural inhomogeneities are on a scale 
larger than the fibrils, they can be resolved. However, 
they are not easily interpreted. Their influence on the 
intensity in the small-angle region may broaden the 
000 reflection, as well as other peaks, and may in- 
duce subsidiary non-Bragg maxima. 

(d) Any amorphous or matrix material can be con- 
si:lered as a constant electron density. This implies that 
the matrix structure is either small compared to the 
size of the fibrils, as in many biological systems, or it 
is disorganized to the point where it yields only high- 
angle scattering. 

(e) The smearing out of the structure of the fibril 
allows the fibril in this low-angle region to be treated 
as a continuous electron density. Combining this with 
the consequences of an equatorial analysis insures that 
the fibril can be described by a continuous radial elec- 
tron density, i.e., the electron density is cylindrically 
symmetric; thus, IFI2=IFI2=FF *, where F is the 
Fourier transform of the fibril. 

(f)  In this low-angle region the intensity of a single 
fibril, FF*, can be expressed in terms of a single par- 
ameter as 4J~(kRe)/(kRe) 2, where Re is an equivalent 
radius. This can be seen by considering the scattering 
from cylindrically symmetric rods with different radial 
electron densities. According to Oster & Riley (1952), 
normalized intensities for a solid cylinder and an in- 
finitesimally thin cylindrical shell, both of radius R, 
are respectively: 

Isc= 4J~(k R)/(k R) 2 
ITs= J~(k R) . 

These are shown as a function of kR in Fig. 1. By a 
simple affine transformation of the thin-shell intensity, 
l'=J2o(kR/l/2), Fig. 1 shows that this new function 
has a shape almost identical to that of Isc in the region 
kR<_ 3, even though electron densities are greatly dif- 
ferent. Also, calculations with Gaussian distributions, 
step functions, and other radial electron densities all 
show the same type of result. (This merely exemplifies 
the implications given in (b) of this section.) From 
equation (1), koRe<rc since St=2Re is a minimum 
value for St. Hence, the intensity of a single fibril in 
this region is 

FF* = 4J~(k Re)/(k Re) z, (2) 

where Re is the radius of an equivalent solid cylinder.l" 
(g) Although Re is used in calculations, it can be 

interpreted in terms of a radius of gyration. In the very 
small-angle region, k R ~ l ,  the intensity of a rod- 
shaped particle can be expressed by a generalized 
Guinier approximation (Guinier & Fournet, 1955) as 

t In actual calculations it was found that k0R<2"5 was 
sufficient to include the first-order reflection. 



588 S M A L L - A N G L E  E Q U A T O R I A L  X - R A Y  S C A T T E R I N G  F R O M  F I B R O U S  SYSTEMS.  I. 

Ia = exp [-UR~/2], 

where RG is the radius of gyration with respect to the 
electron density. 

By expanding in a Taylor series about the origin" 

Since 

then 

k~R~ 
IG---1- ~ - -  + . . . .  

I = 4  J~(kR~) ~_ 1 kZR2 
. . . . . .  

(kRe) z 4 
. . .  , 

RG=Re/V2 . (3) 

Next, consider a paracrystallitei" composed of N par- 
allel fibrils, where the fiber axis is in the z direction. 
To avoid any assumption about the size of the para- 
crystallite, N is considered a parameter. The equatorial 
intensity of the paracrystallite is 

N N 
I ( k ) =  ~ ~ F*Fj exp [ik. ( r t - r s ) ] ,  

i=l  j= l  

where: Ft is the Fourier transform of the ith fibril, and 
r~ defines the position of the ith fibril in real space 
which is confined to the x - y  plane. 

Using equation (2): 

IOi)=C (kR~---~) 2 ,=ts=t  exp [ik. ( r t - r s ) ] ,  

where C is a constant containing atomic numbers, etc. 
If there are many such groups of N fibrils, where 

each group is the same geometrically but the groups 
are randomly oriented with respect to one another 
about their own centroidal z axes and scattering in- 
dependently, then according to Oster & Riley (1952): 

J~(kRe) ~ ~ Jo(krts), 
I(k)=C (kRe)Z ,=1j=1 

where Jo(kr~s) is a zero-order Bessel function and 
ris=lri--rsl. 

Normalizing, so that I(0)= 1 : 
4J2(kR~) 1 ~ 7 ~  

I ( k ) =  (kRe)Z N ~- = "=1 Jo(krts). 

Since r,s is only a scalar quantity, a considerable sim- 
plification results by grouping the rts's of the same 
length and designating this length by a single index i; 
then the intensity can be rewritten as: 

4dZ(kRe) 1 
I (k )=  (kRe)2 N z t=oAfl°(kSt) (4) 

where: 
m is the number of different interfibrillar vector lengths 

in a paracrystallite, 
St is the ith vector length, e.g. St is the first nearest- 

neighbor separation in real space, 

1" A paracrysta l  is used since it is very general  and  can 
describe m a n y  types of  lattices. 

At is the number of fibrils separated from may other 
fibril by the vector length St; hence, At is also the 
number of fibrils at a given vector length St in a 
Patterson function. 
Note also that S0=0, Ao=N, I (O)=  1. 

In real systems the number of fibrils, N, in any coherent 
group or paracrystallite is not a constant, i.e. N varies 
between groups. However, this is easily taken into ac- 
count by usual averaging procedures, and the result- 
ing expression for the normalized intensity is: 

4J2(kRe) 1 
I (k )=  (kRe)2 (N~-) - ,=o ~ (A,)Jo(kSt). (5) 

This equation is identical to equation (4), except that 
parameters At and N z must now be considered as av- 
erage values and ~fi is now the maximum number of 
different vector lengths present in the largest paracrys- 
tallites. 

So far the lattice has been treated as if it were discrete 
(single values of St). However, two-dimensional lat- 
tice distortions are present in any real system, and to 
keep the approach general they must be accounted for. 
To incorporate lattice distortions in an expression for 
the intensity, let W~(S) be a distribution function de- 
scribing the distortions about the ith difference vector 
length St, normalized so that 

I Wt(S)dVs= 1. 

It is easily shown that the expression for the nor- 
malized intensity becomes: 

4J~(kRe) 1 i;, 
I(k)= (At) -(kRe) z (N2) ,~=o 

x l wt(a)Jo[klS,+Zl]dG, (6) 
J 

I (k) -  

o r  

4J~(kRe) 
(kRe) z 

1 ~ (At)Jo(kSt) 
(N  2) i=0 

x I Wt(S)Jo(kS)SdS. (7) 

These two equations are equivalent, differing only in 
the order of integration; however, the first is the most 
logical to visualize, whereas the second is the easiest 
t o  u se .  

Note that these equations are also valid for k >k0, 
when F is used for the scattering factor, but k must be 
small enough so that the matrix can still be treated as 
a constant and F ~ =  F z is still valid. Two examples 
for specific W~(S)'s are as follows: 

Case (a)" Wt(S)= ~(S), i.e., a delta function in S. 
Then: 

l ~5(S)Jo[klSt + SlldG = Jo(kS,) . 
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Hence: 
F 2 

I -  (NZ> ,=o ~" (A~>Jo(kS,). 

Case (b)" W,(S)=(I/a~) exp [-SZ/2a~], i.e., a Gaus- 
sian distribution. 
Then: 

1/a 2 exp [-S2/2az]SJo(kS)dS=exp [-k2aZd2]. 
0 

Hence: 

I -  { N2) i=0 (At) exp [-kZa~/2]Jo(kSt). (8) 

As a final consideration for expressing the equatorial 
intensity, allowances must be made for structural in- 
homogeneities although they would be almost impos- 
sible to incorporate even if they were known and could 
be parametrized. However, one of the main effects of 
structural inhomogeneities is to cancel interference be- 
tween paracrystallites or bundles; then the scattering 
can be described as that due to an average bundle (it 
is in this sense that the term limited coherency is used). 
Examples are the well-known Scherrer line broadening 
formula or polydispersity of micellar and fibrillar sys- 
tems as given by Hosemann & Bagchi (1962). 

This effect is introduced in two ways: by geometric 
inhomogeneities and by electron-density fluctuations. 
If the structural inhomogeneities are geometric in 
nature, such as: nematic or smectic stacking of the 
bundles, fibrillarity of the bundles, regions of parallel- 
ism and non-parallelism, polydispersed bundle sizes, 
or simply a curvilinear lattice causing limited bundle 
size, then equation (7) adequately represents the inten- 
sity by leaving nS, which accounts for the average co- 
herent size, as a free parameter. 

If, however, an electron-density fluctuation asso- 
ciates with the coherent bundle (e.g., that brought 
about by chain-folding in some synthetic polymers), 
then a problem arises. There is an additional contribu- 
tion to the 000" reflection due to the fluctuation 
(Harget, 1969). There are three cases to consider: 

(1) If the electron-density fluctuation is small (e.g., that 
caused by preferential bonding between fibrils which 
set lap the geometric structural inhomogeneities) and 
is small relative to the electron-density difference be- 
tween fibrils and the matrix, then equation (7) is 
adequate to describe the system no matter what the 
average bundle size is. 

(2) If the average bundle size is very large, then the 000 
reflection is unobservable, and again equation (7) is 
adequate to describe the system. 

* The term 000 reflection represents the rise into the origin 
of reciprocal space along the equator. Note that if the super- 
lattice (lattice formed by the paracrystallites) is reasonably 
ordered, there may be at least a first-order peak in this 000 
reflection. However, that possibly is ignored in this paper so 
as not to obscure the method of approach. If such a case 
exists, the theory can be modified easily to handle it. 

(3) If electron-density fluctuations are not negligible, 
and if average bundle size is small, then the contribu- 
tion to the 000 reflection cannot be neglected. 

At first glance, this last case seems to complicate 
matters to the point where the structure can not be 
solved because the electron-density fluctuations are not 
known. However, in actual experiments only the outer 
portion of the 000 reflection can be obtained; thus, 
equation (7) can be used again as a fair approximation 
whose effect will only cause, at worst, an underestima- 
tion of bundle size. A check on the validity of this ap- 
proximation is the consistency of the average bundle 
size obtained with other features of the small-angle 
scattering pattern, such as integral width of the first- 
order equatorial reflection, or the breadth of low-order 
meridional reflections perpendicular to the fiber axis. 

Although equation (7) adequately describes the 
small-angle equatorial intensity, its use has practical 
limitations. If the paracrystallites or bundles are mod- 
erately small in size, then equation (7) is practical to 
use. On the other hand, if the size of paracrystallites 
is large, equation (7) is impractical to use because of 
the large number of fibrils, N, in an average crystallite 
and a correspondingly large number of interfibrillar 
vector lengths, St. Also, as the index i increases, vector 
lengths become closer to each other (e.g. in a crystal, 
Id~,kz+~/dhkz[ decreases towards unity as the indices in- 
crease). This, combined with the fact that paracrystal- 
line distortions increase with the index i, results in a 
continuum of S/s  for large values of the index i. 

By letting the interfibrillar vector lengths be de- 
scribed by a distribution function G(S), and assuming 
the sizes of the paracrystallites to be so large that the 
region where G(S) fluctuates is much smaller than the 
largest vector length present in an average paracrystal- 
lite, then, according to Oster & Riley (1952): 

f 
o o  

I(k)=FZ{1-v 2rcS[1-a(s)]Jo(kS)dS} , (9) 
0 

where F is the scattering factor of a single fibril and 
v is the density of fibril centers in a lateral plane; also, 
I(O) = 1. Equation (9) is analogous to equation (7) and 
is valid only for very large bundles or paracrystallites. 
Also, equation (9) has the advantage over equation (7) 
i.n that counting of the vector lengths is avoided, and 
the paracrystalline lattice distortions are already in 
G(S). However, a serious practical difficulty arises if 
equation (9) is inverted via a radial distribution func- 
tion analysis. This is discussed in the next section. 

3. Patterson function versus a radial distribution 
function analysis 

When solving a scattering problem, a direct approach 
is possible through the Patterson function. However, 
the Patterson function is in general very difficult to 
interpret. On the other hand, a semidirect inversion of 
the intensity data through a radial distribution func- 
tion analysis provides a means of making the inter- 

A C 27A - 6 
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pretation quite simple, though it has a serious practical 
difficulty: F, the scattering factor of a single fibril, 
must be known before performing the inversion pro- 
cess. 

If  the intensity is purposely truncated at k0, then F 
is given by equation (2), but a serious truncation error 
results from the inversion process, even when the cor- 
rect Re is known. Recall that the first few peaks in 
G(S) for a paracrystal have half-widths of approxi- 
mately 2A, 4zl, etc. In a fibrous system (e.g., the kera- 
tins), A/St is of the order of 5 or 6% (Hosemann, 
1951). If the intensity is multiplied by a step function 
of width ko, G(S) is convoluted with the transform of 
this step function. As a result, any peaks in G(S) are 
broadened to a minimum half-width of the order of 
0.6 St, hence obscuring small paracrystalline distor- 
tions. For a liquid this is not too serious a problem, 
since even the first peak in G(S) is very broad. But 
for a paracrystal with relatively small A/St the func- 
tion, G(S), obtained by truncating at k0 and inverting, 
is not very meaningful because of the mentioned 
broadening, and such aspects as nearest-neighbor num- 
bers would be very inaccurate. 

A further well-known problem is to determine the 
correct scaling factor for F 2 when 1IF 2-1 is formed 
before the inversion. Finally, a complication arises 
from the fact that Re is usually an unknown to be 
determined after the inversion. The whole truncation 
problem could be avoided by extending k0 to include 
higher orders in the diffraction data, but then F would 
again be an unknown. In conclusion, a radial-distribu- 
tion function analysis of fibrous systems, even if the 
paracrystallites were large, would not be very fruit- 
ful. 

The alternative is to use a Patterson function. Since 
the Patterson function is simply the Fourier transform 
of the intensity, it is not necessary to know F for the 
inversion; also, in the vicinity of the Patterson origin, 
the convolution of the fibril with itself is present, which 
can give information about the fibril alone. In addi- 
tion, the fibril, convoluted with itself, is located at each 
nearest-neighbor peak; thus, the half-widths of all the 
peaks without the truncation error due to k0 would 
have a minimum value of the diameter of the fibril, 
or approximately St. Consequently, convoluting with 
a function of half-width 0.6S~ would not have as severe 
effects as it has in a radial distribution function analysis. 
The only problem that remains is to obtain a mathe- 
matical formulation of the Patterson function in terms 
of the general expressions for the intensity, and to 
examine the quantitative effect of k0. 

4. Patterson functions - resolution and formulation 
for cylindrically symmetric equatorial scattering 

In general, the Patterson function is defined as: 

P(r) ~ lISSoo ~(r')Q(r'- r)d V, ' ,  

where Q(r) is the electron density of the scattering sys- 
tem. 

The Patterson function, P(r), is also the Fourier 
transform of the intensity; thus, for the x - y  plane: 

'SS P(x,y)= (2re) z co l(kx,ky) 

x exp [ -  i(kxx + kyy)]dk~,dky, 

or in cylindrical coordinates: 

kdk l(k, Ok) exp [ -  ik .  r]d~0k. P(r,(a)= (2~z)2 ,o o 

Imposing the restriction that l(k, ~ak) is a function of k 
only, and integrating over ~0k, yields: 

S 1 l(k)Jo(kr)kdk. P ( r ) =  ~-~ 0 

This equation then represents the Patterson function 
for a cylindrically symmetric system confined to the 
kz =0  plane. Further, by normalizing so that P(O)= 1 :* 

I :  I(k)Jo(kr)kdk 
e(r)= (10) 

I :  I(k)kdk 

Thus, the Patterson function can be obtained without 
assumptions about the scattering system or its co- 
herent size. However, it is not experimentally possible 
to reach either of the limits of integration in equation 
(10); nor is it possible to easily interpret P(r) when full 
resolution is used (k ~ oo in upper limit of integration). 

In actual applications, the intensity data has a lower 
and an upper limit. The lower limit, kl, is brought 
about by experimental inaccessibility near the main 
X-ray beam. The upper limit, k2, is variable and, when 
properly chosen, allows a mathematical description of 
the Patterson function. For an arbitrary k2: 

I k2I(k)Jo(kr)kdk 
P(r, kl,k2)= k, (11) 

Resolution in the Patterson function is a measure of 
the smallest details that can be resolved and is a func- 
tion of k2. The Bragg equivalent of k2 is d2 = 2folk2, and 
the maximum resolution obtained for a given k2 is 
0"6d2. For the purpose of this series of papers, a low- 
resolution Patterson function is defined by k2 ~ k0.t At 
this resolution the intensity can be expressed by equa- 
tion (7). 

* Henceforth, all Patterson functions are normalized. 
I" ko for a given system is a fixed point on the equator, whereas 

k2 is the upper limit of the intensity data used; hence, k2 is a free 
parameter, k2=ko only for the low-resolution Patterson 
function. 
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Hence: 
2 ~  lk2[ o kS k 

P(r, kl,k2)= k, kR~ ~=0 
k, [ Jl(kR~) ]2 

fk, [ kRe ,~=o (Ai)J°(kS') f W,(S)Jo(kS)SdSkdk 
(12) 

Note that this expression for the low-resolution Patter- 
son function is not based on a solid-cylinder model, 
but that the transform of the equivalent solid cylinder 
describes the unknown Fourier transform of the fibril 
very accurately at this low resolution. 

The expression for the low-resolution Patterson func- 
tion, equation (12), contains the parameters describing 
the scattering system. The left side of this equation can 
be calculated using intensity data from k~ to k2(= k0) 
in equation (11), thus obtaining P(r , k ,  k2). If the right 
side of equation (12) can be obtained as a closed-form 
function involving the parameters of the scattering 
system, then this function can be used to directly ex- 
tract the parameters of the scattering system; and the 
problem, in principle, can be solved directly from the 
low-resolution Patterson function. The remainder of 
the paper is devoted to obtaining this closed-form 
function. 

5. Patterson function with complete and limited 
resolution for a single solid cylinder 

As a first step in evaluating the integrals in equation 
(12), the Patterson function of a single solid cylinder 
with complete resolution (k~ = 0, k2 = oo) is studied and 
then the effects of limited resolution (kl > 0,ka < oo) are 
evaluated. 

Starting with the electron density of a solid cylinder 
of radius R e : 

1 O<_r< Re , 
Q(r)= 0 r > R~ , 

the normalized intensity (Oster & Riley, 1952) is 

4J~(kR~) 
I ( k ) -  (kR~)2 (13) 

1"0 

0'8 
p(r) 

0"6 

0"4 

0"2 

0"0 0'2 0!4 0!6 0!8 1'0 1!2 1!4 1!6 1"8 2'0 
rlR~ 

Fig. 2. Patterson function with complete resolution for a 
solid cylinder of radius Re. 

such that I ( 0 ) =  1 and where J1(x) is a Bessel function 
of the first order. 

Let p(r) be the Patterson function of a single solid 
cylinder; thus, for a solid cylinder with complete reso- 
lution: 

l ~o J~(kRe)Jo(kr) 
o k dk 

p(r) = 
I :  J~(kRe) k dk 

= 2 f °° J~(kRe)J~(kRe)Jo(kr)dk (14) 
o k " d 

Evaluation of this integral is straightforward (Harget, 
1969), and the exact result is 

p(r) = 

1 1 r ~/l_r2/4RZ e 
rc R e 

1 ] 
. . . .  cos-l(1-rZ/2R~) O<_r<2Re 

0 r >_ 2Re 

1 r = 0 .  (15) 

This complete Patterson is shown in Fig. 2 as a func- 
tion of r/Re. 

To study the effects of truncation, p(r,k~,k2) must 
be evaluated; however, it is easier to evaluate the effects 
of k~ and k2 separately. 

Let 

i k2 J~(kRe) Jo(kr)dk 
o k 

p(r, k2)= ¢k2 g~(kRe) " (16) 

0 k dk 

For kz < ko < zc/Re and O < r < Re, it is found (Harget, 
1969) that 

p(r, k2)" exp [ °~2k~r214 

f sinh [c~2~ 2 (R~+rZ)] ] / 
X 

] R~ + r 2 
[ 

(17) 

For all r: 

p(r, k2)~ 

.2D2L2 ] 

exp [-r2/2o~gR 2] exp ~ ~xe~22 [ _2°2,2] [ _2°2,2] 
1 - exp ~ lXer~2 1 - exp ~ l~em2 

2 2 

A C 27A - 6* 
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o r  

~o [ k2r ]m 
x ~ ( -  1)m %LT-~-;Y J.,(k2r) (18) 

~=o t ~ R~k~ J 

..2D2/.2 ] 
e x p  {x .tr't eK 2 

2 
p(r, kz) ~ - 

1 - exp ~ /&e/t2- 
2 

oo 2 2 2 m 
{ °~ZRZek~ '~ ffm(k2r), (19 )  x~\ kzr / m =l  

where a2=~-~o. The accuracy and rapid convergence 
properties of  these expressions are demonstrated in 
Fig. 3. Only two terms of  equation (18) are required 
for good agreement in the range O < r < 2R~ and only 
three terms of  equation (19) are necessary for a 1-2 % 
error in the region 2Re < r < co. 

To demonstrate  the behavior ofp(r ,  k2), consider the 
first two terms of  equation (18): 

exp [-- r2/2o~2R2e] 
p(r, k2) ~ 

e-exp [ ~ /~ett2 ] 2 

[ . .2D21.2] 
exp ~ -~Xet£2 

2 
A,2D2 b-2 ] 

1 - exp ~ ~t'e'~'2 
2 

J0(k2r). (20) 

F rom equations (17) and (20), p(r, k2) is approximately 
Gaussian in shape for O < r < 2Re, and the broadening 
due to truncation can now be estimated. For  k2-~ n/Re, 
which is the high-angle t runcat ion value used in a low- 
resolution Patterson, 

[p(Re, zC/Re)-p(R~)] x 1 .7R~_5 ,  

where 5 is the lateral increase in p(Re) due to k2. Using 
equations (15) and (17): 

5 ~ 0 . 1 7  Re 

or about  17 % of Re, which is not too severe. 

1"0 

0"8 

0"6 

0"4 

~" 0"2 

0'0 

-0"2 

0 lr0 210 310 40 5'0 610 710 810 9'0 
r (A) 

Fig. 3. Approximations for the Patterson function of a solid 
cylinder of radius 15/~, k2=0.187 A-I. _ _  computer cal- 
culation of equation (16). x - - x  equation (17), o - - o  
equation (18), (2 terms), o - - - o  equation (19) (3 terms). 

1"0 

0'8 

0"6 

-~ 0'4 ,4< 

0'2 

0 0  

- 0 2  

\, 

'x~\\ 

\ 

I 1 I I t , I I t I 
0 10 20 30 40 50 60 70 80 90 

r (A) 

Fig. 4. High-angle truncation effects on a Patterson function 
for a single solid cylinder of radius 15/~,. - -  . . . .  k2 = co, 

-k2=0"187 A-l, ----k2 =0"568 A -1. 

For  an evaluation of  the spurious fluctuations as- 
sociated with high-angle truncation, consider equa- 
tions (18), (19), and (20). Only the second term in 
equation (18) or (20) fluctuates or oscillates; thus, the 
first term can be ignored. The spurious oscillations have 
a period of  approximately dz=27~/kz because of  the 
Bessel functions. Peak-to-peak height of  the oscilla- 
tions for k2~_rc/Re is less than 0.03 or 3 %  since 
p ( O ) =  1, and this height decays as 1/r 3/z according to 
equation (19). 

All of  these high-angle truncation effects are dem- 
onstrated in Fig. 4, which is a plot of  an exact p(r, k2) 
obtained from equation (16) via a computer  calcula- 
tion for Re= 15 ~ ,  kz=0.187 ,&-~, 0.568 ,&-a, and oo. 

For  low-angle truncation effects let 

i ~ J~(kRe) Jo(kr)dk 
p(r, kl) = k, k _ _  (21) 

i ~ J2~(kRe) 
kl k dk 

From Harget  (1969): 

k2R2 [ 2J~(k,r) ] 
P(r'k~)~-P(r)+ ---4-- p(r) -~xr- " (22) 

Now kl is of the order of  0.02 ,&_- ~ or less for actual ex- 
periments;  therefore, 2J~(kxr)/k~r_~ 1 for O < r < 300 A. 

Hence, 

p(r, kl)~--p(r) + 10-4X R2e[p(r) - 1]. 

Thus, the correction is very small and negative. Its 
effects are only significant for r > Re, since p(r) starts 
at a value of  1, and merely subtracts a small constant  
for 2Re < r < 300 A. 

Combining the effects of  kl and k2: 

l J (kRe2 J0(kr)d  
p(r, kl,k2)= k, k (23) 

J (kRe) 
,, k dk 
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it is easily seen that 

p(r, kt,k2)~-p(r, k2) 
~ 2 1 . 2 D 2  

. ,21.2D2 p(r, k2) 
+ 2 { 1 - e x p [  ~'~2'%'i}2 J 

2Jl(klr) 

(24) 
Exact computer calculations of equations (23) and (16) 
are shown in Fig. 5, which demonstrates the effects 
of low-angle truncation. 

In conclusion, the truncation effects of kl and k2 
developed in this section cause only small perturba- 
tions of p(r). Consequently, when studying the trun- 
cated Patterson of many solid cylinders, these pertur- 
bations can be recognized and evaluated. 

6. Patterson function with complete resolution 
for a group of solid cylinders 

The next step in evaluating equation (12) is to study 
this Patterson function when there is complete resolu- 
tion (kl---0, kz = c~). For simplicity, average values of 
the A{s are ignored, and for clarity, distortion effects 
are neglected here. Equation (12) then becomes: 

At f °° J~(kRe)J°(kSt)J°(kr)dk 
P( r )=  t=o o k 

f J (kR )Jo(kS,)ak A t  . . . . . . . . . . . . . . . . . . .  

i=0  0 k 

Now 

and 2 (  ~ j2(kRe)J°(kr)dk 
s 0 = 0  0 k =p( r ) .  J 

(25) 

10 

0'8 

0"6 

0'4 

0'2 

0'0 

0'2 - 

I I I I I I 
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r (A) 

Fig .  5. H i g h -  a n d  l o w - a n g l e  t r u n c a t i o n  ef fec ts  o n  a P a t t e r s o n  
f u n c t i o n  f o r  a s ing le  s o l i d  c y l i n d e r  o f  r a d i u s  1 5 / ~ .  - -  - - -  
p(r) ,--p(r ,0,0.259),----p(r ,  0"019, 0"259). 

Also, 

p(x>2Re)=O and St > 2Re for i=  l, 2 . . . .  m .  

Thus, 

f 
oo J~(kRe)Jo(kS,)dk 
o k = 0  for i > 0 .  

Also, let 

f :  J2(kRe)J°(kSt)J°(kr)dk 
. . . . . . . . . . . .  k . . . . . . . . . .  g,(r).  (26) 

Then equation (25) reduces to 
2 m 

e(r)=p(r)+-Ao ~ A,g,(r). (27) 
l = l  

In this form it is seen that the Patterson function of a 
single solid cylinder is located at the origin of P(r), as 
expected, and that it can be evaluated to obtain Re. 
Also, as shown by Harget (1969), g t ( r )=0 except in 
the region 

St - 2Re < r < St + 2Re. (28) 

Thus, a peak is also located at each St in P(r). 
Now gt(r) is not an easy integral to evaluate. It is a 

complicated expression involving elliptic integrals of 
the second kind, but it suffices to say that gt(r) is ap- 
proximately symmetric about St and has a shape sim- 
ilar to p(r). Also, the maximum value of gt(r) is gt(SO, 
and it can be shown (Harget, 1969) that 

o r  

gt(S3 = - - - -  
Re 2 p(x)dx 

2reSt lo . . . .  
r 4 s  ~, 

Re{8 32(  )2 } 
g,(St)~ 2zcS, ~ -  + ~ " + . . .  , (29) 

Thus, the S{s can be obtained from P(r) simply by 
observing the positions of the peaks in the Patterson 
function. In addition, Ai/Ao can be obtained for the 
ith peak by measuring the peak height and using: 

peak height= 2gt(St)A~/Ao. (30) 

Note that AdAo is simply the ith nearest-neighbor num- 
ber for the ith peak. These nearest-neighbor numbers 
are characteristic of the geometry and coherent size 
of the scattering system and have the same meaning 
as those used in a radial distribution function. 

In addition, if the coherent size of the scattering sys- 
tem is very large it can be shown (Harget, 1969) that 

N z~R2 (for large r ) ,  (31) P(,.) = o = -V 

and hence the volume fraction occupied by the fibrils 
can be obtained. 

Thus, in principle, all physical parameters describ- 
ing the scattering system can be obtained once the 
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Patterson function, with complete resolution, is cal- 
culated. Unfortunately, complete resolution cannot be 
obtained simply because a low-angle truncation, k~, is 
imposed by experimental equipment and a high-angle 
truncation, k2, is purposely imposed so that equation 
(25) is valid. However, if the effects of k~ and k2 on 
P(r) of equation (27) can be evaluated, then in principle 
the physical parameters can again be obtained. 

7. Patterson function with limited resolution 
for a group of solid cylinders 

The final step in evaluating equation (12) is to study 
the effects of low-angle and high-angle truncation on 
the Patterson function with complete resolution. For 
simplicity average values of the A~'s are again ignored, 
along with distortions, and for clarity the effects of kx 
and k2 are evaluated separately and then combined. 

For high-angle truncation (recalling that the upper 
limit is purposely imposed so that equation (25) is 
valid), 

Ai I k2 J~(kRe) 
P(r, k2) = i = 0 0 k 

- - - -  Jo(kS,)Jo(kr)dk 

I kz J~(kR~) Ai - -  Jo(kSl)dk 
~=0 ,0 k 

(32) 

This can be expressed (Harget, 1969) as: 

P(r, k2)~-p(r, kz) 

o 2 2 - -  A,g~(r, k2). (33) + 1 exp [-~-Rek2] - -  " 4 0  i = 1  

This is in a form very similar to P(r) of equation (27). 
Also, p(r, k2) was fully discussed in § 5, and the only 
new function is g~(r, k2). This function could be evalu- 
ated for all r (Harget, 1969), but it is a very com- 
plicated expression and is similar to g~(r); therefore, 
it is only of interest in the region S~ - 2R~ < r < S~ + 2Re. 
In this region: 

8 r)Z] cup [ 16S, r g'(r'k2)'-~ {exp [ -  -~e (S ' -  ] 9R 2 
[ 16S~r ~ 9 2 z 

× 10 ~ - ~ 2 - ]  - e x p  [ Rek232 ] 

× Jo(k2SOJo(k2r)}, (34) 

where I0 is a modified Bessel function (Bessel function 
with an imaginary argument). 

To demonstrate the accuracy of these equations, 
consider Fig. 6 where an exact Patterson function ob- 
tained by computer calculation of equation (32) for a 
model system is shown, along with the approxima- 
tions of equations (33) and (34) in the regions 
S~- 2Re < r < S~ + 2R~. It is concluded that at S~, 
equations (33) and (34) are accurate to within 1 or 
2%. 

Although equation (34) appears to be complex, sev- 
eral of its features can be readily established. The first 
term in this expression is the dominant one, and the 
second is merely a small correction. In addition, 
exp (-x)I0(x), which is tabulated in tables of Bessel 
functions, is slowly varying compared to the Gaussian 
distribution about S~; therefore, the ith peak is approx- 
imately Gaussian in shape. Its maximum is at r=S~* 
and its half-width, HW~, according to the half-width 
of a Gaussian curve, is 

HW~ ~_ 1.8 Re. (35) 

Finally, the most important feature of this expression, 
the peak height at r=Si ,  is obtained by using equa- 
tions (33) and (34): 

A~ 1 
Peak height~ A0 1 exp 9 2 2  -- [-ggRek2] 

× {ex  -9R2 e ] Io \  9R 2 ] 

- e x p  [--~2R2k2]j2(k2Si)}. (36) 

To calculate the effects of low-angle truncation, an 
expression of the form: 

A, l ~ ----J2(kRe) Jo(kS,)Jo(kr)dk 
p(r, kO = ~=0 k~ k (37) 

f J  )J0(ks,)dk i=0 k, k 

must be evaluated. Recalling that kl is experimentally 
imposed by how close observations can be made to 
the main beam, two important cases for evaluating this 
expression have been worked out (Harget, 1969). 

Case (1): when the scattering system has limited co- 
herence such that the 000 reflection extends far enough 
to be intersected by kl, then: 

P(r)- R2N - - ~  q(,',x, kO 

P(r'kO~- 1----~-R2eN {1-exp  [- 1 }, (38) 

where 

q(r,z, kO=exp [-r2/z2]-exp [ -  Z-~24k~- ] 

/2k,r " 
× ~ ( -1 ) "  J,,(kd') (39a) \ zEk2 l n = 0  

or 

q(r,z, kO=exp [_ Z____~] n=l ~ \2kd:! J.(klr), (39b) 

* exp (-x)lo(x) is a monotonically decreasing function 
and may cause a very small shift of the i= 1 peak toward the 
origin of Patterson space. 
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where: 

Z2= ~ A,S~/N z, (40) 
i--1 

and N =  total number  of particles scattering coherently. 
Thus, no really new information is added by these 

parameters  since they are a combinat ion of the A~'s 
and S~'s. 

The effect of this low-angle truncation of the Patter- 
son function is seen quite easily f rom equations (38) 
and (39). The only varying contr ibution (function of r) 
is q(r,x, kl), but  this function is identical in form to 
the function p(r, k2) which has been studied previously. 
It is approximately Gaussian in shape out to 2X, where 
it becomes small and starts to oscillate. Thus, the Pat- 
terson function can now have negative values. Also, 
the period of  q(r,z,kt) is much greater than that  of  
p(r) or g~(r); consequently, q(r,z,k~) can be separated 
easily from the rest of  the Pat terson function. In fact, 
the effect of  low-angle truncation can be considered 
as merely a modulat ion of P(r) with the slowly vary- 
ing function q(r,z, kl). 

Case (2): when the scattering system is infinite in 
extent (in the micron range), such that  the 000 re- 
flection is a delta function located at the origin, then:  

e(r)- f2 
P(r'k~)"~ 1-~2  ' (41) 

where f2 = rcRZeOo and 00 = density of scattering centers. 
This is an extremely simple effect because f2 is a con- 
stant. 

The combined effect of  low- and high-angle trunca- 
tion is now very easy to formulate:  

P (r, kl, k2) = 

0'3f ft 

0'2 

P ( r ,  k2) . . ~  

x 

0o I ~' " I .I  I ~ I 
, \  

30 40  50 60 70 80 90 100 110 

r(A) 

Fig. 6. Approximations for the many-particle Patterson func- 
tion, P(r, k2). R = 1 0 A ,  kz=0"2728 A -1. - -P( r ,  k2) from 
equation (32). For the region S~-2R<r<S~+2R. © ~ ©  
from equations (33) and 1st term of (34). x - - x  from 
equations (33) and (34). 

Dividing both  numera tor  and denominator  by 

S: 
this becomes: 

Ii' l(k)Jo(kr)kdk 

P(r, k2)- fk2i(k)kdk 
.~0 P(r, kl, k2) = (42) 

I;' I(k)kdk 
1 -  

For  case (1), 

[,-exp [- S2' I(k)kdk~- -~-2 ] 

I k' i(k)Jo(kr)kdk ~ 2 o ~-f q(r,z, kl). 

For  the last integral, recalling that  1(0) must be nor- 
malized to 1: 

I I k~ 4J~(kRe) k~l(k)kdk= -1 T ~ A, Jo(kS,)kdk 
0 l=0 0 (kRe) 2 

1 k2 4J~(kRe) 

But only the i---0 term is significant and 

f k, 4JZ(kRe) 16 9 2 2 
0 (kRe) 2 kdk~- ~"e {1-exp[-x-~Rek2]}" 

Thus, 

fkZI(k)kdk { 1 - e x p  [-- x~-Rek2]} • 
16 1 ,.~ 9 2 2 

o - 9R z N 

By inserting these integrals in equation (42), the final 
result is: 

P (r, k~, k2) " 

1 I NR~ 
P(r, k2)- ~ 1 - e x p  [ _  ~-~-90ZV21,e~2J ] - - ~  q(r'z'kl) 

1-{ l-expt- R k l}° - T  -exp - -  
(43) 

This final expression is no more complex than equa- 
tion (38) for P(r,k~), except that  there is now a con- 

1 
stant, 9 1 - exp [--x-~Rekz]9 2 2 , and P(r ,  k2) is substituted 

for P(r). 
For  case (2), proceeding in a similar fashion: 

P (r, k2) - -} 1 - exp [ -  39~-02z'zl-~- zJ Q 
P(r'k'k2)~- 1 , (44) 

' - l °  1-exp ° [ - x-x R ek z] 
which is analogous to equation (41). 
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This then completes the development of P(r, kl, k2), 
and the integrals in equation (12) have been reduced 
to functions of the parameters which describe the scat- 
tering system. 

8. Summary 

Mathematical expressions for the equatorial intensity 
have been presented which involve the Fourier trans- 
form ef the fibril, interfibrillar interference function, 
and effects of lattice distortions in a quantitative man- 
ner. Also, allowances have been made for the effects 
of structural inhomogeneities by leaving the coherent 
size as a free parameter and allowing for the possibility 
of an additional scattering component due to associated 
electron-density fluctuations. One of the most impor- 
tant features of these equations is that the functional 
form of the Fourier transform of the fibril is known 
in the region 0 < k < k0 and involves only a single par- 
ameter, Re, which can be related to the radius of gyra- 
tion of the fibril. It is emphasized that this expression 
for the fibril is not a model but a modification of 
the Guinier approximation and holds very well for 
k<ko.  

Mathematical expressions for the low-resolution Pat- 
terson function have also been derived, and their ac- 
curacy has been demonstrated to be within a few per- 
cent. Techniques for the use of these expressions, along 
with a different approach, are presented in the next 
paper of this series, where lattice distortions and higher- 
resolution data are also considered. 

This research was supported by U.S. Public Health 
Service Grant AM02830. 
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Direct Evaluation of Kcq Fourier Coefficents in X-ray Profile Analysis 
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Using a least-squares method of analyzing X-ray diffraction profiles, it is shown that one can calculate 
directly the Fourier coefficients of the Ke~ component from the total K0c doublet intensities. These 
Fourier coefficients can be calculated around any preferred points of the profile, e.g. the center of grav- 
ity or peak of the profile of Ket. 

Introduction 

Fourier analysis of X-ray diffraction lines normally 
requires that the intensity be given for the Kel com- 
ponent alone. To this end a few methods of separating 
the K~ doublet have been proposed. The works of 

Brill (1928), Jones (1938) and Finch (1949) all assume 
that the K~I profile has a known functional form (e.g. 
Gaussian). This assumption is not valid in the case of 
line profiles taken from deformed materials (Warren, 
1960) where Fourier analysis is extensively used. Also, 
the assumption of Papoulis (1955) that the profile is 


